【摘要】單相接地故障是造成城市路燈設(shè)施漏電隱患的主要原因,通過研究剩余電流保護器(RCD)的工作原理,找到了利用鉗表快速地測量回路中剩余電流的方法,從現(xiàn)場作業(yè)的角度出發(fā),提高人工排查漏電隱患的效率。
【關(guān)鍵詞】路燈;剩余電流;漏電隱患;維護作業(yè)
0引言
路燈是指給道路提供照明功能的一種用電設(shè)備,其特點是分布廣、燈桿基本使用鋼鐵材料,燈桿頂部的燈具、燈桿內(nèi)的電纜線都帶電,由于路燈桿較多分布于人行道或綠化帶,燈桿與人很容易接觸到,因此,當漏電發(fā)生時,很容易引起人體觸電的事故。近年來,隨著城市規(guī)模的不斷擴大,城市人口與日俱增,城市照明范圍也隨著日益擴大,市民也對城市照明提出了更高的要求。在這個背景下,路燈設(shè)施的數(shù)量和密度在不斷增加,這也給城市照明設(shè)施的管理增加了難度,而時有發(fā)生的路燈漏電傷人事件,也給城市照明設(shè)施的管理者提出了一個難題:如何做到既能保證照明的效果,又能把安全隱患消除。本文將主要探討漏電現(xiàn)象的原理、如何快速排查隱患并分享實際工作中的一些經(jīng)驗。
1漏電原因分析
路燈設(shè)施漏電分為“燈桿帶電”和“電纜漏電”,這兩類現(xiàn)象產(chǎn)生的場景有以下幾種:
1)路燈桿內(nèi)電纜絕緣損壞導(dǎo)致電線與燈桿接觸,使燈桿帶電。
2)燈頭漏電。照明燈頭雖然設(shè)計有防水功能。但絕緣發(fā)生變化或者線路被雷擊后。燈頭存在漏電的可能。
3)路面積水侵入燈桿內(nèi)部導(dǎo)致漏電。城市內(nèi)澇時,路燈桿若淹沒于水中,水位超過燈門高度,接線頭防水措施不足會導(dǎo)致漏電。
4)電纜絕緣變化。路燈供電線路比較長,有的線路可能長達數(shù)公里,并且都埋于地下,時間久了會受侵蝕發(fā)生絕緣變化,或受外力影響導(dǎo)致電纜皮破損,電纜絕緣降低就可能導(dǎo)致漏電。在電路分析中,以上漏電現(xiàn)象多為單相接地故障,?低壓配電設(shè)計規(guī)范?(GB/T50054—2011)第5.2.9條規(guī)定“TN系統(tǒng)中配電線路的間接接觸防護電器切斷故障回路的時間,應(yīng)符合下列規(guī)定:配電線路或僅供給固定式電氣設(shè)備用電的末端線路,不宜大于5s”,假設(shè)某一段路燈線路長1km,采用VV-1kV4×25mm2+1×16mm2電纜,當線路末端發(fā)生單相金屬性接地故障時?故障電流Id=122.3A,對于常用的額定電流為63A的斷路器。很難在5s內(nèi)切斷電路,如果發(fā)生單相非金屬性接地故障,現(xiàn)有的斷路器更可能是根本無法切斷故障回路[1]。單相接地故障中,故障點電壓會下降,另外兩相電壓會升高,但是由于LED路燈電源大多數(shù)是寬范圍設(shè)計,電壓低至90V也可以正常工作,因此無法通過肉眼觀察亮燈情況來發(fā)現(xiàn)故障,路燈線路由于電纜與大地接觸,且距離很長。電纜的對地分布電容所產(chǎn)生的漏電容易超過一般漏電保護器的整定范圍,導(dǎo)致無法合閘,常規(guī)的漏電保護器也無法加裝。因此,在實際的維護管理中,我們需要增加人工排查故障的方式,提高線路的安全性。單相接地故障發(fā)生時,保護導(dǎo)體(PE)線內(nèi)會流過漏電電流,我們可以通過測量出漏電電流來排查出故障回路[2]。一段路燈線路長1km,采用VV-1kV4×25mm2+1×16mm2電纜,當線路末端發(fā)生單相金屬性接地故障時,故障電流Id=122,3A,對于常用的額定電流為63A的斷路器,很難在,5s內(nèi)切斷電路,如果發(fā)生單相非金屬性接地故障。
現(xiàn)有的斷路器更可能是根本無法切斷故障回路[1],單相接地故障中,故障點電壓會下降,另外兩相電壓會升高,但是由于LED路燈電源大多數(shù)是寬范圍設(shè)計,電壓低至90V也可以正常工作。因此無法通過肉眼觀察亮燈情況來發(fā)現(xiàn)故障,路燈線路由于電纜與大地接觸,且距離很長,電纜的對地分布電容所產(chǎn)生的漏電容易超過一般漏電保護器的整定范圍。導(dǎo)致無法合閘,常規(guī)的漏電保護器也無法加裝。因此,在實際的維護管理中,我們需要增加人工排查故障的方式,提高線路的安全性,單相接地故障發(fā)生時,保護導(dǎo)體(PE)線內(nèi)會流過漏電電流,我們可以通過測量出漏電電流來排查出故障回路[2]。
2不同類型電流產(chǎn)生的原理
2.1不平衡電流產(chǎn)生的原理
三相五線制中時,任何一相總的單相負荷都有兩個回路,一是和零線組成220V回路,二是和另一相串聯(lián)構(gòu)成380V回路,當三相平衡的時候,電源相間的線電壓與每一相回路的相電壓之間會形成一個和諧的回路,而此時零線上是沒有電流的。當負荷不平衡的時候,串聯(lián)在線電壓之間的兩相負荷就不一樣大了,而由于串聯(lián)電路中電流相等,于是負荷大的一相多余的電流就從零線流走了,這個電流就是不平衡電流[3]。
如圖1所示假設(shè)L1相接了一個燈L2相接了兩個燈,L3相接了三個燈,L1相的一個燈通過零線和L2相兩個燈串聯(lián)接于L1L2線電壓,L1相的一個燈也通過零線和L3相三個燈串聯(lián)接于L1L3線電壓。此時系統(tǒng)處于不對稱狀態(tài),三相不平衡,在線電壓與L1相L2相共三個燈的回路中。電流處處相等,而L1相和L2相各自回路的負載電流卻不等,而系統(tǒng)之所以還可以運行,是因為L1L2相多余負荷的電流從零線走了,因此,此時的N線是帶電的。
2.2零序電流產(chǎn)生的原理
三相系統(tǒng)的電壓、電流都可以分解為正序、負序和零序分量,在三相平衡且無故障發(fā)生時,系統(tǒng)處于對稱運行狀態(tài),沒有負序零序分量,只有正序分量,若出現(xiàn)了負序或零序分量,則說明系統(tǒng)存在問題[4]。單相接地故障會產(chǎn)生零序電流,假設(shè)三相平衡,當電路中發(fā)生觸電或漏電故障時,回路中有漏電電流流過,這時三相電流相量和不等于零,其相量和為Ia+Ib+Ic=I(I即零序電流)[5]。雖說單相接地故障會產(chǎn)生零序電壓和零序電流,但是,在實際工作中我們發(fā)現(xiàn),由于路燈低壓設(shè)施數(shù)量龐大、線路長、接線不規(guī)范等諸多問題,導(dǎo)致在實際運行中。三相不平衡的情況較為常見,線路中經(jīng)常有不平衡電流,因此我們難以通過直接測量零序電流的方式去排查單相接地故障。
2.3漏電電流產(chǎn)生的原理
法快速檢測線路中的剩余電流,既然如此,我們就可以通過測量剩余電流的方式快速方便地排查出單相接地故障,剩余電流保護的原理,是讓三相線路及中性線共同穿過一個CT(電流互感器),如下圖,三相線路與中性線的電流矢量和為IA+IB+IC+IN,當線路正常沒有發(fā)生單相接地故障時,此電流矢量和為0(忽略正常泄露電流)。當發(fā)生單相接地故障時,PE線會流過接地故障電流ID,則電流矢量和為IA+IB+IC+IN=ID[6],
3漏電電流的檢測
在實際操作時,我們在路燈箱變的低壓出線端。任選一個回路,用鉗形表把A相、B相、C相和零線用鉗形表同時鉗住,此時測得的電流數(shù)值就是IA+IB+IC+IN,而這個數(shù)也等于ID。也就是故障電流(漏電電流),在這個過程中,不對稱分量被抵消。因此測得的剩余電流,由單相接地故障所產(chǎn)生的漏電電流,圖3是現(xiàn)場操作的圖片。
4實際應(yīng)用
我們用這個方法對133臺箱變進行了剩余電流的檢測,表1和表2是部分測量數(shù)據(jù),其中N1~N10代表回路編號。表1中,有一臺箱變NS3 ̄100的N5回路的數(shù)值達到了20.2A,明顯超出正常范圍。經(jīng)過排查后,我們在一處燈桿內(nèi)找到了故障原因,如圖4所示,該燈桿燈門內(nèi)的接線端,被外力拉入至底下的燈盤位置,我們猜測,可能是臺風“山竹”襲來時,倒伏樹木牽扯了路燈電纜,導(dǎo)致接線端被拉到低位,而該燈桿內(nèi)低位非常潮濕,導(dǎo)致接線頭絕緣老化加速,潮濕的環(huán)境使線頭產(chǎn)生放電現(xiàn)象。使燈桿帶上漏電壓,其電壓達到了103V,由于只是其中一相的絕緣老化,擊穿空氣通過燈桿與大地連接,產(chǎn)生的漏電流只有十幾安培,空氣開關(guān)無法跳閘,導(dǎo)致此燈桿可以“帶病工作”,且能正常亮
燈。常規(guī)巡查難以發(fā)現(xiàn)故障,表2中,也有一臺箱變NS3 ̄125的N2回路數(shù)值明顯較大,達到了23A,我們對該回路進行排查后,找到了故障點,故障點也在一處燈桿內(nèi)。該燈桿的燈門內(nèi)電纜接線頭絕緣膠布燒斷,導(dǎo)致電纜頭散開,電纜頭與燈桿金屬表面直接接觸,造成了單相接地故障。表1和表2中除兩個故障回路外,其余大部分回路測得的數(shù)值相對較低,由于路燈線路長,且每個回路的總長度差異較大,電纜對地的分布電容也會產(chǎn)生些許的漏電流,因此并不是說測出了剩余電流數(shù)值,就說明回路存在故障。正常的線路也可能被檢測出輕微的剩余電流。在這個基礎(chǔ)上,我們暫時無法給出一個精確的安全數(shù)值,只能在維護作業(yè)時,從數(shù)值*大的回路開始逐個排查。
5安科瑞ASJ系列產(chǎn)品介紹
安科瑞ASJ系列剩余電流動作繼電器和多回路剩余電流監(jiān)測儀可與低壓斷路器或低壓接觸器等組成組合式剩余電流保護裝置,主要適用于交流50Hz,額定電壓400V及以下的TT和TN系統(tǒng)配電線路,用來對電氣線路進行接地故障保護,防止接地故障電流引起的設(shè)備損壞和電氣火災(zāi)事故,也可用來對人身觸電危險提供間接接觸保護。
ASJ10/20系列剩余電流動作繼電器
ASJ60系列剩余電流監(jiān)測儀
5.1功能介紹
ASJ10/20系列剩余電流動作繼電器具有以下功能:A型或者AC型剩余電流測量,剩余電流越限報警指示,額定剩余動作電流可設(shè)定,極限不驅(qū)動時間可設(shè)定,兩組繼電器輸出,具有就地,遠程“測試”、“復(fù)位”功能;
ASJ60系列剩余電流監(jiān)測儀具有以下功能:16路剩余電流監(jiān)測,1路預(yù)警繼電器輸出,16路報警繼電器輸出,2路DI輸入,自動重合閘功能,遠程通訊功能,遠程分合閘功能。
5.2技術(shù)指標
ASJ10/20系列剩余電流動作繼電器技術(shù)指標
項目 | 指標 | ||||
AC型 | A型 | ||||
輔助電源 | 電壓 | AC110/220V(±10%) | AC/DC85~270V | ||
功耗 | <5W | <5W | |||
輸入 | 額定剩余動作 電流I△n | 0.03、0.1、0.3、0.5(A) | 0.03、0.05、0.1、0.3、0.5、1、3、5、10、30(A) | ||
極限不驅(qū)動時間△t | 0.1、0.5(s) | 0、0.06、0.1、0.2、0.3、0.5、0.8、1、4、10(s) | |||
額定剩余不動作 電流I△no | 50%I△n | 50%I△n | |||
動作特性 | AC正弦交流電流 | AC正弦交流電流、 脈動直流電流 | |||
頻率 | 50Hz±5Hz | 50Hz±5Hz | |||
動作誤差 | -20%~-10%I△n | -20%~-10%I△n | |||
輸出 | 輸出方式 | 一組常開、一組轉(zhuǎn)換 | 一組常閉或常開、一組轉(zhuǎn)換 | ||
觸點容量 | 5A250VAC 5A30VDC | AL1:8A250VAC;5A30VDC AL2:6A250VAC;5A30VDC | |||
復(fù)位方式 | 就地、遠程 | 就地、遠程、自動 | |||
環(huán)境 | 工作溫度 | 運行溫度:-20℃~+55℃,存儲溫度:-30℃~+70℃ | |||
工作濕度 | ≤95%RH,不結(jié)露,無腐蝕性氣體場所 | ||||
海拔高度 | ≤2000m | ||||
污染等級 | 3級 | ||||
安裝類別 | Ⅲ類 |
ASJ60系列剩余電流監(jiān)測儀技術(shù)指標
項目 | 指標 | |
電源 | 電壓范圍 | AC/DC85V~265V |
*大功耗 | ≤10VA | |
輸入 | *大測量支路數(shù) | 16路 |
剩余電流測量范圍 | 1mA~30A | |
額定剩余動作電流I△n | 1mA~30A連續(xù)可調(diào) | |
動作特性 | AC正弦交流電流及脈動直流電流 | |
頻率 | 50Hz±5Hz | |
動作延時 | 0~10s可設(shè) | |
開關(guān)量 | 2路無源干接點輸入 | |
輸出 | 輸出方式 | 1路水浸報警繼電器(常開) 16路剩余電流報警繼電器(常開) |
觸點容量 | AC250V/3ADC30V/3A | |
重合閘 | 次數(shù) | 0~99連續(xù)可設(shè) |
間隔時間 | 0~999秒連續(xù)可設(shè) | |
通訊 | 方式1 | RS485通訊,Modbus-RTU協(xié)議 |
方式2(可選) | 4G無線通訊 | |
環(huán)境要求 | 溫度 | 工作溫度:-10℃~55℃,存儲溫度:-30℃~70℃ |
濕度 | ≤95%,不結(jié)露 | |
海拔 | ≤2500m | |
平均無故障工作時間 | ≥50000小時 |
5.3選用說明
剩余電流動作繼電器在應(yīng)用時應(yīng)注意低壓系統(tǒng)的接線型式。
系統(tǒng)形式 | 系統(tǒng)接線 | 說明 |
TT系統(tǒng) | 采用ASJ。因為當發(fā)生單相接地故障時,故障電流很小,且較難估計,達不到開關(guān)的動作電流,外殼上將出現(xiàn)危險電壓。 | |
TN-S系統(tǒng) | 可采用ASJ。更快速靈敏切斷故障,以提高安全可靠性,此時PE線不得穿過互感器,N線穿互感器,且不得重復(fù)接地。 |
其余接線型式需要改造成以上兩種型式使用,防止出線誤動作或者不動作的情況。剩余電流互感器的選擇應(yīng)根據(jù)主回路的額定電流為參考選擇,
型號 | 孔徑 | 主回路額定電流 | 變比 |
AKH-0.66L45 | 45mm | 80A | 1A:1mA |
AKH-0.66L80 | 80mm | 250A | 1A:1mA |
AKH-0.66L100 | 100mm | 400A | 1A:1mA |
AKH-0.66L150 | 150mm | 630A | 1A:1mA |
AKH-0.66L200 | 200mm | 1000A | 1A:1mA |
AKH-0.66L-260*100II | 265*104mm | 1000A | 1A:1mA |
實際應(yīng)如圖所示,互感器安裝在主回路或者支路上,通過測量剩余電流判斷是否驅(qū)動斷路器動作。
ASJ10/20剩余電流繼電器典型應(yīng)用
ASJ60剩余電流監(jiān)測儀典型應(yīng)用
5.4注意事項
當采用剩余電流動作保護器(RCD)作為電擊防護附加防護措施時,應(yīng)符合下列規(guī)定:
額定剩余電流動作值不應(yīng)大于30mA;
額定電流不超過32A的下列回路應(yīng)裝設(shè)剩余電流動作保護器(RCD):
供一般人員使用的電源插座回路;
室內(nèi)移動電氣設(shè)備;
人員可觸及的室外電氣設(shè)備。
剩余電流動作保護器(RCD)不應(yīng)作為保護措施;
采用剩余電流動作保護器(RCD)時應(yīng)裝設(shè)保護接地導(dǎo)體(PE)。
6結(jié)束語
我們使用的這種快速檢測剩余電流的方法,可以在路燈維護作業(yè)過程中,提高人工排查故障回路的效率??焖侔l(fā)現(xiàn)漏電安全隱患,通過一段時間的現(xiàn)場檢驗,確定了該方法的可操作性。但是我們還無法整定出安全數(shù)值,使得檢測的過程還存在瑕疵。未來,我們還將對回路長度與電纜對地分布電容造成的泄漏電流之間的關(guān)系進行研究,完善通過檢測剩余電流排查路燈漏電隱患的方法。